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ABSTRACT

The scope af molecular dynamics oroblems designad to simulate
materials properties is described, focussing on the limits computation'
imposes on space and time scales, as well as the limits theoreticdl
understanding imposes on our knowledge of interatomic forces. Five
strategies for improving the efficiency of the simulations are described.
Shock-induced solid-solid phase transformations are discussed to 1llustrate
these ideas,

1. SCOPE QF NONEQUILIBRIUM MOLECULAR DOYNAMICS SIMULATIONS

Experimental values of fracture toughness and yield strength vary over
about six orders of magnitude. The corresponding laboratory fracture and
plasticity experiments typically use specimens with dimensions measured in
centimeters and deformation times ranging from a microsecond to a year.
Computer experiments, designed to simuiate laboratory experiments or to
illustrate physical principles, although registering steady gains in size
and duration, are far from being able to match these length and time
scales. Molecular dynamics simulations bhave gained five orders of
magnitude in complexity and speed since the Fermi-Pasta-Ulam <calculations
carried out at Los Alamos 20 vyears agel{l]l. Presentday size and duration
limits, which are now improving relatively slowly, sharply restrict the
maximum scope of computer simulations of ohysical processes, The largest
computer simulations have involved 1061 ,6@4 particles[2] and the longest
simulations correspond to physical times of order | microsecond.

Both the laboratory-sized compact tension spacimens used to measure
fracture ‘oughness and the Hopkinson-Bar specimens usad to measure dynamic
yield strengths, although "small,” are still much too large for full-scale
modelling at the atomistic level. Thus real laboratory creep experiments,
in which metals flow very slowly under relatively small applied loads, are
carried out with laboratory time scales ranging from seconds to vears. The
relatively much faster deformations caused by impacting small plastic
sample disks with relatively-massive flying elastic bars, " Hopkinson-Bar
experiments," with strain rates which can axceed 10Q ,00Q2 hertz, are still
tco slow for an accurate simulation of atomistic trajectories.

The computational limitations on space and time do not affect the
accuracy of a simulation. Provided thst se are satisfied with six-figure
accuracy there is no difficulty in using Adams or Runge-Kutta finite-
differ=nce methods to integrate the eguations of moticn(3]. Despite this
impressive numerical accuracy computer calculations can only be caricatures
of the behavior of real materials. This 1s becaus2 our knowledge of
interatomic forces remains primitive,.

Current models{4,5] used for the interactiaon of relatively simple
atoms, such as sodium and magnesium, ars based on highly-intricate and
detailed models for the electronic and ruclear structure of a metal. The
complexity of this work defies exact description or reproducibility, and is
a subtle mixture of art and science. Thus it 1s highly unlikely that a



typical opublished calculation incorporating these electronic pseudo-
actential models could he accurately reproduced, even with years of effort.
The figure shows two recent versions of the effective atomic interaction in
magnesium, The energy, in millirydbergs, is shown as a function of
distance, in Bohr radii. The Moriarty-McMahan calculation(4] invelves no
acjustable parameters; the Barnett-Cleveland-Landman calculaticni{B8] is
fitted to experimental data. The difference between the two, around 15% at
the potential minimum, gives a rough estimate as to the reliability of the
theoretical work. Uncertaintias of this order in the interaction pctential
are sufficient to shift the positions of phase transitions by pressures of
order 1@ kilobars and temperatures of order 100 kelvins.

The fact that density fluctuates rather wildly on an atomic scale
suggestis that no single density-dependent potential is likely to b= a fully
adequate approximation. In groblems involving mechanical deformation one
expects that energies of the order of microrydbergs could be significant.
These energies, about six orders of magnitude below the hydrzgen-atom
energy, are three orders of magnitude smaller than the millirydberg scale
of the figures. It seems highly unlikely that quantitative calculaticns of
interactions will ever become possible on the accuracy scale necessary to
reproduce mechanical behavior. The need for greatly imporoved accuracy in
interatomic forces 1is well recognized. Serious efforts to calculate
accurate atomic forces as functions of coordinates are underway. New
emerging technigues may eventually make semiguantitative molecular dynamics
possiblelB], even for transition metals and covalently bonded materials.
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2. STRATEGIES FOR EFFICIENCY IN MOLECULAR DYNAMICS

Molecular dynamics became possible with the development of computers
for the weapons calculations of the second world war. The forces used in
the early work were simple, slightly anharmonic springs or hard spheres
with additional attractive forces, in keeping with the limits of knowledge
and computational <capacity. The original aim of molecular dynamics
calculations was the understanding of a long-standing problem which
fascinated Boltzmann and his colleagues, the consistency of Newton's
reversible eguations of motion with the irreversible second law of
thermodynamics.

Fracture and flow, for instance, are irreversible processes, As a
specimen is broken or caused to charge shape, in an irreversible way, we
nevertheless expect that the underlying dynamics 1s reversible, described
either by Newton's or Schroedinger's equations of motion. It is a rare and
unusual circumstance for a crack to heal, and the necked region of a
iensile test specimen never reverts io its original diameter and shape if
the tension 15 changed to compression. A detailed understanding of the
paradox that reversible equations yield irreversible behavior was given by
Boltzmann for dilute gases. Even zo, this topic remains under intensive
investigation 10Q years later.

Whan the qualitative thermodynamic features of irreversibility and the
existence of gas, lioguid, and solid phases had been established, emphasis
shifted to the cataloging of equilibrium and linear transport properties
for more elaborate potentials. Inverse powers, combinations of powers,
exponentials, and "realistic"” pseudopotentials began to be studied. This
work made it possible to assess the usefulness of the theories, developed
in the period 1930-1960, which incorporated well-defined but poorly known
distribution functions and made approximations of uncertain value. The
computer experiments provided the first accurate distribution functions and
were used to test the common truncaticn and superposition approximations of
statistical mechanics.

In the past ten years the emphasis has changad, largely due to the
success achieved by hard-sphere perturbation theory in calculating the
thermaodynamic properties for many-body fluid systams, A good survey of
current research can be found 1n the oroceedings o the 1985 Enrico Ferm:
Summer School on Molecular Dynamics Simulation of Statistical-Mechanical
Systems. The present focus of attention has shifted to nonlinear dynamical
problems such as those involved in fracture, plastic flow, and
shockwaves[71]. The nonlinear work also makes contact with the current

focus on the fractals and attractors associated with nonlinear dynamical
systems[81].

During inis past decade several strategies have been developed which
have increased the power of molecular dynamics beyvond what could be
achieved by straightforward solution of Newton's conservative equations of
motion, Here we list five strategie:z for such improvement:

1. Taking number—-dependence of the microscopic results 1nto account
systematically 1n crder to make more accurate macroscopic predictions.
2. Comnsidering mesoscopic constitutive simulations with many degrees of

freedom, 1ntermediate between microscopic atomistic calculations and
macraoscopic continuum simulations.

S. Developing constrained dynamics so that 1ndependent variables other
than energy and volume carn be used. This work i1ncludes the i1ntroducticn cf



thermostats to remove irreversibly generated heat.

4. UOeveloping corresponding states relationships, analogous to the scale
models used in mechanical engineering, linking results for several related
problems together.

5. Developing artificial processes to avoid at least a part of the
size—-dependence which makes full-scale simulation uneconomic.

Let us consider these five stratagies i1n more detail:

-

2.1 Number Dependence

Molecular dynamics 1s at its best 1in elucidating mechanisms on an
atomic scale. Such mechanisms dominate problems involving fracture,
plastic flow, or chemical reactions. Attempts to deal with these same
problems using continuum mechanics are complicated by the presance of
singularities in the continuum esquations. The singularities in the stress
and strain fields at cracks and dislocations are relatively long-ranged.
The stress in the neighborhood of a crack tip in an elastic crystal falls

off as the square root of L/r, where L 1s proportional to the size of the
crvstal.

The stress in the neighborhood of a dislocation also falls off slowly,
as d/r, where d is the interatomic spacing. Thus simulations covering 1%
of the sample size or 100 atomic diameters are required to reproduce,
accurately, macroscopic stress fields in the vicinity of crystal defects.

The size dependence far many problems of interest in materials science
is surprisinagly straightforward to analyze. This 1is illustrated in the
figure (3], Stress near a brittle crack tip--made by cutting bonds linking
the top and bottom halves of the crystals for 49% of the crystal
length--was determined for a series of triangular-lattice two-dimensional
crystals varving in size from 10 rows of 70 atoms to 40 rows of 280 atoms.
The Hooke's-law linear force becomes increasingly attractive to a

separation of 1.15d, and then is reduceo linearly to zero, vanishing at a
cutoff of 1.30@d.
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The toc anc pottom of the crvs:al were displaced in order to stress
the crack, and tne fracture toughness K was measured. The intercept from
the empirical =:x~aight line shown :n the figure is nicely consistent with
the square--oci dependence menticned above. This correspondence of
continuum and atomistic results on length scales large with respect to the
range of interpa-ticle forces makes it possible to combine these points of
view in fraciure and plasticity problems,

It is 1intz-—esting to see that accurate data for crystals much too
large for direct simulation can be cotained by extrapolating small-crystal
data to the large crystal limit,. This requires much less computer time
than would a straightforward brute-force simulation of the stress field - in
the largest possible crystal. The ~esults shown in the figure display
much less size—gzpendence than would ductile cracks in crystals containing
dislocations, or than would cracks in crystals with long-range, stiff
interactions.
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Mesoscopic Simulations

Lattice dislocations provide thzs mechanism for plastic flow. DOne part
of a crystal flows relative to a contiguous part, through the motion of
dislocations on the glide plane ssparating the two parts. The dislocations
themselves can be treated as particles, in two dimensions, or as deformable
lines in three dimensions. The dislccations move through a crystal with an
equation of motion giving their velccity as a function of orientation and
local stress. DOislocations can move at speeds near the sound speed under
relatively small stresses., They interact with a tensor force and can react
and combine to form other dislocations,

By studving the properties of dislocations, it has proved possible to
determine eguations of motion directly from computer experiments [10], By
including dislocation interactions and stress-induced motion , "mesoscopic"
simulations of plastic flow can oe carried out. Such simulations,
intermediate 1n length scale between atomic and continuum calcuiations,
greatly increase the potential of computer experiments in the understanding
of plastic fiow.

2.3 Thermostats

In any irreversible process, such as fracture or plastic flow, storad
mechanical energy is converted to heat. The temperature in a "cold-worked®
metal or in the vicinity of a propagating crack can exceed the ambient
temperature by hundreds of kelvins. The fundamental source of this heat is
the potential energy stored in the solid through the action of external
deformation forces, The energy 15 released as heat in the irreversible
process of breaking i1nteratomic bonas. In laboratory experiments this heat
can then be carried, by phonons, to the boundary of the system. A typical
thermal diffusivity for a metal 1s one square centimeter per second. Thus,

in a microsecond, neat diffuses about 40,000 particle diameters in a simple
metal such as room-temperature sodium.

It 1s di1fficult to model this msition of heat on an atomistic level.
This is because tne phonons which carry the heat have free pathns which
often substantially exceed the <si:ze of convenient computational cells,
Thus a third strategy for extending the capability of simulations is to
introduce tnermostats directly 1nic the eguations of motion. This
eliminates tne rasid changes of thermodvnamic state which would otherwise
accompany small-scale i1rreversible processes,

"

and also makes it unnecessary
to look at system: large with respe-: to a typical phonon mean Ffree path.



Thermostats based on rescaling atomic velocities have been 1n use for over
a decade. A recent breakihrough in this area was announced by Shuichi
Nosel11,12), who found a way to obtain the canonical constant-temperature
phase-space distribution from ordinary differential eguations of motion
slightly modified from Newton's equations:

ma = F - zmv
whera m is the atomic mass, v, and a are the velocity and acceleration, F
is the force, and =z is the friction coefficient. Nose calculated the
friction coefficient as a memory function for the kinetic energy,
proportional to the time integral of K - 3NkT/2.

The same friction-coefficient form of the equations of motion,
including the linear thermostatting force had already been used 1n
simulations designed to keep the kinetic energy of =selected sets of
particles constant, but in the earlier work the frictian coefficiant had no
memory. It was simply chosen to fix the kinetic energy (and has the form
(d0/dt1/2K, where O and X are the potential and kinetic eanergies,
respectively).

Several other forms of thermostats and ergcstats have been introcduced
and cempared[{?7,131. So far each of these choices can be described, in the
language of control theory, as differential, proportional, or integral
contrecl, but it seems likely that more general forms will emerge in the
near future. The canonical Nose thermostat and the 1sckinetic Gaussian
thermostat seem to be the most useful. Evans and Holian made a comparison
of six different thermostats applied to the calculation of the ngnlinear
fluid viscosity. Although all six methods produced essentially the same
viscosity the Gaussian thermostat was more efficient than the others by at
least a factor of six in computer timel131. Why it is that the nonlinear
viscous response, far frem equilibrium, 1is nearly independent of the typs
of thermaostat used is not yet understcod.

2.4 Corresponding States Relationships

In metals the electronic energy 15 a sensitive function of density.
Thus the corresponding pseudopotentials, such as those shown in the first
figure, which 1impute a part of +this energy to the ion cores, depend
relatively strongly on density and nearby crystal defacts. For this reason
it may well be wunrealistic in most cases, to imagine a quantitative
simulation of a particular mater:al. The many aluminum and ircn alloys
have very different fracture and flow properties relative to single
crystals of the pure metals.

Thus corresponding states relationships which link togethar
simulations with one structure or force law with other simulations can be
extremely useful. These relationships 1identify properties which are
insensitive te the form of interpart:icle forces and which therefore can be
predicted, with fair confidence, from computer simulations. Van der UWaals'
fluid equation of state, which describes gas-liquid coexistence in a
semiquantitative way, 1s a familiar examole. By choosing characteristic

van der Waals constants, a and b, many different mater.als canrn be described
by the same squation of state.

Corresponding states relationships away from equlilibrium are not so
well known. At low rates of strain materials deform 1n indivigual ways,
depending very much upon crvstal struciure, inclusions grain sice,

radiation history, and a host of such variables, At high strain rates
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things become simpler. The figure shows the variation of solid-phase yield
stress with strain rate for isothermal steady shear{14], The stress is
made dimensionless by dividing by tne shear modulus. The strain rate is
made dimensionless by using the interparticle spacing d and the transverse
sound speed characteristic of dislocation motion. Within the width of the
corresponding-states lines the two- and three-dimensional crystals produce
the same results. An extrapolation of the computer data, the solid lines
at the eaxtreme upper right corner of the figure, agrees reasonably well
with data, of uncertain validity, for metals. The temperatures of the
computer simulations, relative to the melting temperature, are shoun.
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2.5 Artificial Processes

Finally, in some cases, it may be cossible to replace inhomogeneous
time—-dependent physical processes by homogeneous artificial processes
which span essentially the same thermodynamic states. This i1dea has been
fully explored, for both fluids and solids, in simulating steady viscous
flows and heat flows in fully periodic homogeneous systems[14 151,

Viscous flow has been simulated by using the dashed-line velocity
field shown in the figure. The basic system extends initially from -L/2 to
L/2, and is repeated spatially with pericdic boundar:es. Then a.
macroscopic veleocity, shown in the figure, 1s added to the initial
micrascopic thermal velocities. The =mooth dashed line corresponds to
simole longitudinal compression. If the macraoscopic velocity varies in a
seri1es of steps, as shown with the heavy .ine, then a pair of shockwaves is
generated, at -L/2 and L/2. Shear flows, as well as flows combining shear
and dilatiomn can be simulated in an analogous way.
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Heat flow has also been simulated 1in periodic homogeneous sSystems.
This has been accomplished by using an external field, derived from linear
response theorv, which drives more-energetic particles in one direction and
less—2nergetic particles in +the opposite direction. It has to be
emphasized that these artificial processes generating shear flows,
shockwaves, and heat flows are not the same as those determined in
labcoratory experimenis on the same thermodynamic state. But, as the
Evans-Holian calculationsi13] demonstrate, the differences are
cases considerably less than the statisti:cal uncertainties in the measured
transport, and hence nealigible. This potentially wuseful idea of
arti1ficially reproducing noneguilibrium states by using external forces is
explored more fully i1n the last section. There we suggest a new method for
simulating the polymorphic phase transformations induced by shochkwaves.

in most



3. SIMULATION OF SHOCK-INDUCED PHASE TRANSFORMATIONS

Shockwaves can produce high noressures(16] much more cheaply than
static experiments and are therafore coming into relatively common use in
materials research. Ongoing work at Livermorel17] is directed toward the
low—cost shockwave-induced synthes:s of superconductors from amorphous
metals. The experiments proceed by treating relatively thin layers of
metal with shockwaves of controlled pressure and duration.

The shock process 1is relatively complicated, even in the simplest
steadyv-wave case. In this case, in a frame centered on the shock wave, the
flows of mass, momentum, and energy are all constants, Otherwise, mass,
momentum , or energy would build up irn a part of the wave, which would then
not be a steady one. The conservation equations for these three fluxes
provide relations between the pressure tensor component in the shockwave
direction, the density, and the neat flux. These state variables are
connected in a definite way in a shockwave, As shown in the figure, the
longitudinal pressure varies linearly with volumz. The energy flux has a
quadratic variation with volume.
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How can these same states, characteristic of a steady shockwave, be
traversed in molecular dynamics simulaticons in which homogeneous periodic
boundaries are used? In the simulations we can follow the Gauss-Nose ideas
of 1i1ntroducing a friction coefficient 1nto the eguations of motion.
Because two constraints must be satisfied the shockwave-simulation friction
coefficient is a tensor, with different components parallel and
perpendicular to the shock propagation direction.

We are testing this idea in the one case where a strong dense-system
shockwave transformation has been well characterized, the 490-kilobar
skackwave studied by Holian, Hoover, Moran and Straubl18]. The main point _
which 15 presently unclear 1is the choice of strain rate which must be
imposed on the simulation. When the fluid-phase results have been
successfully reproduced we will apply the same idea to the solid
transformations used to synthesize supercongucting alloys. In the
solid-phase shockwaves studied by Hol:ian and Straub at Los Alamos
considerable dependence of the shockwave structure on system width was
found. Because the systems studied had tc be many times longer than wide
1in order to study a steady profile, a cross section containing only 32
atoms was the maximum practical si:ze. With the development of a new
technique for homogeneous simulation of the shockwave process, cross
sections containing a few hundred atoms should become possible.
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